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Abstract. The insulating character of the spin–Peierls cuprate CuGeO3 is investigated by adopting
a modified linear combination of atomic orbitals (LCAO) band method both within the local spin-
density approximation (LSDA) and using the strong-correlation correction(LSDA + U). It is
shown that the strongly orbital-dependent exchange splittings of the narrow Cu 3d bands open an
insulating gap, and that the strong d–d electron correlations increase the gap substantially. The
present results accord with the experimental ones.

1. Introduction

Since the discovery [1] of the first spin–Peierls (SP) inorganic compound, CuGeO3, enormous
numbers of experimental and theoretical studies have been carried out [2–9]. Superlattice
reflections [2, 3] indicate that the uniform antiferromagnetic (AFM) Cu chains undergo a
transformation into a dimerized state at low temperature [10, 11]. The assertion that the
ground state is a spin singlet with a finite spin-excitation energy gap, which is responsible for
a rapid drop of the magnetic susceptibility to zero below 14 K [1], has been confirmed by
an inelastic neutron scattering measurement [12]. In spite of the presence of non-negligible
interchain exchange interactions [12], a quasi-one-dimensional (quasi-1D) Heisenberg model
gives a reasonable description for the magnetic properties of this material [7–9].

As regards the energy band structure for CuGeO3, a few calculations [13, 14] have been
performed, based on the local (spin-) density approximation (L(S)DA). A non-magnetic (NM)
metallic state was obtained by using the linearized augmented-plane-wave (LAPW) method
[13]. An almost identical result was yielded for both the NM state and the AFM one within
the linear muffin-tin orbital method in the atomic sphere approximation (LMTO-ASA) [14].
Additionally, it was shown that a SP distortion can lead to a minor gap, thus stabilizing the SP
state to some extent [13, 14]. Unfortunately, the previous calculations did not account well for
the insulating character [15] of this strongly correlated cuprate [16, 17].

It is commonly accepted that the L(S)DA usually gives poor descriptions for strongly
correlated systems such as transition metal oxides, where on-site Coulomb interactionsU of
localized d or f electrons could be significant but are generally underestimated by the L(S)DA,
a formalism within a weak-coupling mean-field theory [18]. In general, theU -parameter
is used on the assumption of a well-defined energy separation between the occupied and the
unoccupied states and primarily determines the size of the insulating gap. Produced by making
a strong-correlation correction to the L(S)DA, the so-called L(S)DA+U scheme was proposed
by Anisimovet al [18], and several subsequent modifications [19, 20] were presented. This
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L(S)DA + U scheme, yielding quite satisfactory results for a few strongly correlated systems,
is considered to be a useful approach [18–22].

RecentlyŠliveňcaninet al calculated the band structure for the AFM state of CuGeO3

by using the LMTO-ASA method within the LSDA +U regime [23]. With the d–d electron
Coulomb and exchange energy parameters ofU = 9.66 eV andJ = 0.59 eV obtained from a
constrained density-functional calculation, their calculation gave an insulating gap of 3.02 eV
and a spin moment of 0.89µB per Cu ion. As noted in their paper, the considerable value ofU

may reflect that there is some degree of underscreening, and it was stated in reference [19] that
reasonable values ofU from the constrained density-functional calculation may still differ by
up to 30% between different calculations. A relatively moderate value ofUdd = 6.7 eV was
determined by an electron spectroscopy study [17], which implies that the large gap could be
partly due to the overestimated Coulomb repulsions. On the other hand, since no gap is opened
for CuGeO3 whenU is not turned on [14], one could not applyU unambiguously [24, 25].
For this reason, one would like to obtain a gap (no matter how small) at the level of a density-
functional ground-state calculation so as to define theU -correction in an unambiguous fashion
[25]. The band calculations have been carried out in this work by adopting a modified LCAO
method [26], which is characterized by both a precise treatment of the Hartree potential and
an efficient evaluation of multi-centre integrals. As will be seen below, the strongly orbital-
dependent exchange splittings due to the anisotropic exchange potential open an insulating
gap for this compound, and the strong d–d electron correlations increase the gap substantially
and account well for the charge-transfer (CT) insulating character of this cuprate.

In section 2, the modified LCAO band method is described; it is considered to be a full-
potential (FP) scheme due to there being no shape approximation for the charge density and
crystal potential. In section 3, the results obtained are presented and a discussion is given.
Finally, conclusions are drawn in section 4.

2. The computational method

As one of the common band approaches, the LCAO method is typical of methods of solution
of the one-electron Schrödinger equation in terms of the crystal potential in using a LCAO set
of basis functions in the tight-binding approximation. In practical applications, this equation is
generally transformed into a Hohenberg–Kohn–Sham (H–K–S) equation based on the density-
functional theory and then solved in the L(S)DA self-consistently. A key point of this method
is that of how to evaluate multi-centre integrals efficiently. This problem is solved successfully
by means of the partition function scheme [27, 28], as described below.

The first step is to define an atomic partition function [27],Pi(Er), for any atomi with
respect to any pointEr in a crystal, and it is required that allPi(Er) sum tounityat any pointEr:∑

i

Pi(Er) = 1. (1)

For any given pointEr0 and the neighbouring atomsj of this point, it is feasible to construct
a set ofPj (Er0) to meet the demand∑

j

Pj (Er0) = 1 (2)

and for other atoms far away from this point, it is practical to set their partition functions to
zeroover this point. Thus equation (1) is fully satisfied.

By means of an appropriate continuous analogy to the finite-temperature Fermi function
of statistical mechanics [27], a set of well-behaved single-centre partition functions are
constructed, each of which has a value nearly equal tounitynear its own nucleus and decreases
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smoothly tozerofar away from the nucleus. Since the construction depends on only the relative
atomic positions [27], naturallyPi(Er) possesses the distinct and effective character

Pi(Er) = Pi ′(Er + ERi→i ′) (3)

due to the translational symmetry of crystals, wherei ′ refers to the atom achieved by a
translation of the atomi by the lattice vectorERi→i ′ . For the reason, only a set ofPi(Er)
attached to the atoms within a reference unit cell (U.C.) are required to be constructed in
practical applications.

Next, the multi-centre integrals are treated within this partition scheme.
An integral over all space for any functionF(Er) possessing translational symmetry, e.g.,

a Hamiltonian and overlapping matrix elements, can be reformulated as follows:∫
F(Er) dEr =

∫ ∑
i

Pi(Er)F (Er) dEr =
∫ [∑

k

Pk(Er) +
∑
k′
Pk′(Er)

]
F(Er) dEr (4)

wherek andk′ denote any atom within the reference U.C. and any one within any other U.C.,
respectively.

The equation∫
Pk′(Er)F (Er) dEr =

∫
Pk(Er − ERk→k′)F (Er − ERk→k′) d(Er − ERk→k′) =

∫
Pk(Er)F (Er) dEr (5)

is derived, according to equation (3). Therefore, one can rewrite equation (4) as follows:∫
F(Er) dEr = N

∫ ∑
k

Pk(Er)F (Er) dEr = N
∑
k

∫
Fk(Er) dEr (6)

whereN refers to the total number of the unit cells, and the integrand

Fk(Er) = Pk(Er)F (Er) (7)

possesses a single-centre character due toPk(Er).
Consequently, the multi-centre integral can be evaluated by solving a set of single-centre

sub-integrals over a finite space around their respective atoms within only the reference U.C. By
using the discrete 3D points in the spherical polar coordinates [27] centred on each nucleus, the
multi-centre integral is numerically solved with a high accuracy. For example, an evaluation
of the integral for the crystal charge density in NiO gives a value of 287.9395 electron charges
for a magnetic U.C. containing eight formula units with 288 electrons. In the same way, a
value of the charge equal to 107.9447 electron charges is yielded for a formula unit of LaCoO3

with 108 electrons. The calculational errors are 0.02% and 0.05%, respectively. The error is
usually less than 0.2% for more complex systems [26].

A precise potential is required in electronic structure calculations. On the other hand,
the partition scheme contributes considerably to an accurate solution for the Hartree potential
defined as follows:

V (Er) =
∫

ρ(Er ′)
|Er − Er ′| dEr ′ (8)

where the crystal charge density,ρ(Er), is constructed from the following expression:

ρ(Er) =
∑
Ek
w(Ek)

occ∑
n

fnEk
∣∣9nEk(Er)∣∣2 (9)

wherew(Ek) is an integrational weighting of the specialEk-points over the irreducible Brillouin
zone, and9nEk(Er) andfnEk are a single-particle wave function and the corresponding eigenstate
occupancy, respectively.ρ(Er) is usually non-spherical in many realistic systems.
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One can treat Poisson’s equation in the partition scheme instead:

∇2V (Er) = −4πρ(Er) = −4π
∑
i

Pi(Er)ρ(Er) = −4π
∑
i

ρi(Er) (10)

where the atomic-like charge density,ρi(Er), satisfies the equation

ρi(Er) = ρi ′(Er + ERi→i ′) (11)

which is similar to equation (3) due to the translational invariance ofρ(Er).
One can expressV (Er) as a sum of individualVi(Er):

V (Er) =
∑
i

Vi(Er) (12)

whereVi(Er) satisfies the single-centre equation

∇2Vi(Er) = −4πρi(Er). (13)

Consequently, the multi-centre Poisson’s equation (equation (10)) is reduced to a set of
independent single-centre problems (equation (13)), each of which can be numerically solved
by spherical harmonic analysis [28] forρi(Er) as follows.

Eachρi(Er) is expressed as a spherical harmonic expansion about its own nucleus:

ρi(r, θ, φ) =
√

4π
∑
`m

√
2` + 1ρi`m(r)Y`m(θ, φ) (14)

where the radial functionρi`m(r), called a partial wave of the charge density, is written in the
following form:

ρi`m(r) = 1√
4π
√

2` + 1

∫
ρi(r, θ, φ)Y`m(θ, φ) d�. (15)

The value ofρi`m(r) over each radial point is obtained by performing an angular integration
(� denotes solid angle) within the angular quadrature approach [29]. Self-consistency of the
partial waves is implemented in the present method.

Vi(Er) is also expanded in the same manner asρi(Er):

Vi(r, θ, φ) = 4π
√

4π
∑
`m

1√
2` + 1

Vi`m(r)Y`m(θ, φ) (16)

and therefore equation (13) is separated into a set of 1D ordinary differential equations:

1

r

d2

dr2
[rVi`m(r)] − `(` + 1)

r2
Vi`m(r) = −(2` + 1)ρi`m(r). (17)

Each componentVi`m(r) is calculated by using the Green’s function of the Laplacian [28]:

Vi`m(r) = r−`−1
∫ r

0
ρi`m(x)x

`+2 dx + r`
∫ ∞
r

ρi`m(x)x
1−` dx. (18)

Finally, the Hartree potential is reconstructed as follows:

V (Er) = 4π
√

4π
∑
i`m

1√
2` + 1

Vi`m(|Er − Eri |)Y`m(θ, φ). (19)

Note that only the single-centre Poisson’s equations attached to the atoms within the
reference U.C. are required to be solved in practical calculations, according to equation (11).
In addition, for the given discrete points used to evaluate the multi-centre integral in equ-
ation (6), the summation over atomsi in equation (19) can include just the neighbouring atoms
of these points, and the rest, contributed by other atoms far away from these points, can be
regarded as a point-charge potential and easily treated by the Ewald summation approach.
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As a result, the precise Hartree potential is obtained while maintaining the self-consistency
of the partial waves at some finite order (` 6 `max). In addition, the exchange–correlation
potential can be evaluated by using the self-consistent charge density (expressed by equation
(9)) within the L(S)DA formalism. Thus, a possible local anisotropy of both of the potentials
would be better manifested, whereas such an anisotropy is almost neglected in a spherical
approximation. In this sense, the present method is considered to be a FP scheme due to there
being no shape approximation for the charge density and the potentials. Its validity has been
verified by a few test calculations. For example, both the resulting gap of 0.3 eV for NiO and
a NM ground state for LaCoO3 are consistent with the results obtained within other methods
[26].

In spite of the many successes in describing the ground-state properties of various
materials, the L(S)DA usually yields poor results for the strongly correlated systems. In this
work, the LSDA +U calculation is also performed in order to confirm the insulating character
of CuGeO3. The one-electron potential

V LSDA+U
mσ = V LSDA +U

∑
m′
(nm′−σ − n0) +U

∑
m′ (6=m)

(nm′σ − n0)− J
∑

m′ (6=m)
(nm′σ − n0

σ )

(20)

(which is dependent on the symmetric Cu 3d orbitalm and theσ -spin) is adopted as a spin-
polarized state [30].n0 andn0

σ denote an average occupancy of the 3d orbitals and that of the
σ -spin, respectively, and the initial values are taken from the self-consistent LSDA results.U

andJ are usually orbital dependent in realistic systems. Compared withU , J exerts only a
minor influence on the electronic states. It is common to adopt orbital-independent parameters
U andJ for simplicity [18, 22]. The experimental value ofU = 6.7 eV [17] and a calculational
one ofJ = 0.98 eV [18] for Cu2+ in CaCuO2 are used in the following LSDA +U calculation.

CuGeO3 has an orthorhombic structure at room temperature [4, 5] with lattice parameters
a = 4.81 Å, b = 8.47 Å, andc = 2.94 Å [10, 11], each unit cell containing two formula
units. The crystal structure is characteristic of edge-sharing CuO6 octahedra, which form
Cu[O(2)]2 chains along thec-axis, and where the two apical oxygens and four planar ones
are denoted as O(1) and O(2), respectively. In addition, corner-sharing GeO4 tetrahedra form
GeO(1) chains in the same direction [10]. In the following calculations, the numerical atomic
basis functions are generated iteratively by solving the H–K–S equation for the isolated atoms
in the crystal environment [30], and Cu 3d4s, Ge 4s4p, and O 2s2p orbitals are chosen as
the valence states. The Hartree potential is expanded into lattice harmonics up to`max = 4,
and the von Barth–Hedin exchange–correlation potential is adopted. As will be seen below, a
consideration of the anisotropic potentials is beneficial to the understanding of the electronic
structure for CuGeO3.

3. Results and discussion

The AFM Cu chains deserve more attention due to their leading role in the SP transition of
CuGeO3. A doubled cell with AFM ordering along thec-axis contains four formula units. For
comparison, the calculation for the NM state is performed first.

The band structure for the NM state is essentially consistent with the previous LAPW
result [13], as shown in figure 1. A pair of nearly degenerate half-filled conduction bands with
a width of∼1 eV, both composed of dxz, dyz, and O(2) 2p orbitals, appear relatively dispersive
along the0Z direction parallel to thec-axis but rather flat along other directions perpendicular
to thec-axis, indicating a quasi-1D character of the Cu[O(2)]2 chains. Compared with the
conduction bands arising from CuO2 planes with a Cu–O–Cu bond angle of nearly 180◦ in
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both La2CuO4 and YBa2Cu3O7 [31], however, the present conduction bands are less dispersive
due to a strongly bent Cu–O(2)–Cu bond angle [11] of about 99◦ in CuGeO3. Despite the Cu–
O(2) bond length of 1.93 Å [11] being nearly equal to the lengths 1.89 Å for La2CuO4 and
1.94 Å for YBa2Cu3O7 [31], a strong deformation [11] of Cu[O(2)]4 basal planes in CuGeO3
is considered to reduce the overlap between the Cu 3d and the O 2p orbitals, thus leading to
the present narrow band structure. Over a narrow range of energy from−3 to−0.7 eV relative
to the Fermi levelEF the occupied d bands are distributed; these are a little mixed with the
O 2p bands lying below them. AboveEF , Ge bands appear first—such as both of the lowest
unoccupied bands plotted in figure 1. The present result supports the proposal of a strongly
ionic character of this compound [17], despite a discernible Ge–O covalent bonding indicated
by the Ge–O hybridized states below−7 eV.
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Figure 1. LCAO energy band results for the NM state. The0XSY0 and ZURTZ directions are
perpendicular and0Z is parallel to thec-axis Cu chain direction. The Fermi level is set as the zero
of energy.

The half-filled conduction band structure for CuGeO3 may be unstable with respect to
the lattice distortion, as was suggested by the previous result that a supposed dimerization
distortion of 0.05 Å opens a gap of about 0.1 eV for this cuprate [13, 14]. The minor gap could
be taken as an indication that the lattice distortion favours the formation of the SP phase at
low temperature. But one realizes that the gap is too small to account well for the insulating
character of this system. It is natural to turn to the investigation of the AFM state.

The present calculation yields an insulating solution for the AFM state with a spin-splitting
gap of 0.57 eV, obviously different from the previous metallic result [14] given by the LMTO-
ASA calculation. Both of the near-degeneracy conduction bands (see figure 1) split into two
pairs of narrow bands, lying on both sides of the Fermi level, as seen in figures 2(a) and 3(a).
Primarily distributed above the O 2p bands and with about a 28% mixture of them in the
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Figure 2. Energy band pictures of the AFM state obtained from (a) the LSDA: an insulating gap
of 0.57 eV and (b) the LSDA +U with U = 6.7 eV: a modified band structure and an increased
gap of 2.4 eV.
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Figure 3. Total and projected densities of states (DOS) per formula unit for the AFM state obtained
from (a) the LSDA and (b) the LSDA +U . For the Cu 3d-projected DOS, the solid (dashed) trace
denotes the majority (minority) spin. The vertical dashed line refers to the Fermi level. In (b) the
2p–3d CT insulating gap is evident, as well as the enhanced hybridization between the 3d and the
2p states.
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topmost valence band, the occupied d bands appear less altered. The unoccupied Ge bands
remain almost unchanged. Additionally, a spin moment of 0.46µB per Cu ion is given, 0.3µB
carried by the dxz orbital and the rest by the dyz orbital. Such a spin polarization is expected,
since both of the orbitals form half-filled conduction bands in the NM state, and naturally they
are the most likely ones to ‘feel’ spin polarized.

The present insulating solution is not surprising. For this case, the charge and spin densities
around the Cu ions appear non-spherical due to the non-closed 3d shell and the spin moment,
thus leading to the anisotropic Hartree and exchange–correlation potentials, both of which have
been treated in the present FP-like calculation. In the LSDA formalism, the exchange potential
is dependent on the ratio of the spin density to the total charge density, and the potential is
proportional to the ratio if it is a small value, as is the case for solids [31]. Owing to the higher
spin density over the dxz and dyz orbitals than over other d orbitals, a stronger exchange potential
is seen for the dxz and dyz orbitals than for the other orbitals, thus generating exchange splittings
of 0.86 eV for the dxz orbital and 0.63 eV for the dyz one, both larger than that of 0.38 eV for
the other orbitals. It is evident that the exchange splittings become orbital dependent due to
the anisotropy of the exchange potential. Consequently, the enhanced exchange splittings of
the dxz and dyz hybridized bands open the insulating gap of 0.57 eV for this compound. Since
the present gap is dominated by the spin splittings, the anisotropic Hartree potential could
contribute less, despite the fact that it modifies the energy separation between the spin-like d
bands. As stated above, the 3d orbitals become more confined and less hybridized due to the
strong deformation of the CuO4 basal planes. In this sense, the relatively large gap is partly
attributed to the narrow band structure of the localized d electrons.

A similar case occurs for the quasi-2D spin-1
2 system CaV4O9, where, as pointed out by

Pickett on the basis of a FP-LAPW calculation, a gap is induced by strongly orbital-dependent
exchange splittings:∼1.3 eV for the dx2−y2 orbital and about 0.4 or 0.6 eV for other unoccupied
d orbitals [32]. Additionally, it was shown in his earlier review that an insulating gap is easily
opened for La2CuO4 due to orbital-dependent spin splittings [31]. Moreover, as indicated by
Norman, an orbital polarization leads to a drastic increase of the gap for NiO and accounts for
the presence of the insulating gap in FeO, CoO, and La2CuO4 [25].

In contrast, when a spherical approximation is adopted for the realistic charge and spin
densities, and the potentials, the spherically averaged densities lead to an underestimated
exchange potential, thus giving a reduced and orbital-independent exchange splitting.
Naturally, the decreasing exchange splitting disfavours the spin-splitting gap and restricts
the spin polarization for the dxz and dyz orbitals. Perhaps this is why the previous LMTO-ASA
calculation, giving a spin splitting of 0.15 eV and a Cu moment of 0.16µB , yielded a metallic
state rather than an insulating one for this compound [14].

It has been seen above that the orbital-dependent exchange splittings induce the insulating
solution for this compound, which is an improvement upon the previous metallic one for
CuGeO3. However, the present gap is much smaller than the experimental one of about 3.7 eV
[16, 17], and it does not exhibit a CT character [16, 17] clearly. This is to be expected for this
strongly correlated system, as stated in the introduction. Since the strong-correlation effect of
the localized d electrons, implied by the present narrow band structure, has been confirmed by
experiment [17], it is worthwhile to carry out the LSDA +U calculation to achieve a better
understanding of the insulating property of this material.

The unoccupied d bands shift up and the occupied d bands move down due to the strong
on-site Coulomb repulsions, leading to an increased gap of 2.4 eV, as seen in figure 2(b). The
strong correlation enhances the orbital and spin polarization further, and a subsequent influence
appears with the effect that the dyz state is entirely pulled down belowEF and the unoccupied
minority-spin dxz bands shift up close to the bottom of the Ge bands. As a consequence, the



218 Hua Wu et al

Cu 3d orbitals are almost fully filled except the minority-spin dxz orbital with an occupancy
of 0.23e, giving a spin moment of 0.76µB carried entirely by the dxz orbital [23]. Physically,
the orbital polarization tends to drive the system towards a full spin polarization, but only a
partial polarization is achieved due to the hybridization with the O 2p states [25]. The present
spin moment is close to the measured one of 0.7µB [15] reduced by quantum fluctuations
[31]. Besides, as shown in figure 3(b), the large downshift of the occupied d bands results
in a significant enhancement of the oxygen component at the topmost valence band, which is
composed of the O(2) 2p state (about 60%) and the Cu 3d one (nearly 40%), and the lowest
unoccupied bands have the dxz character. Compared with the LSDA result above—that the
topmost valence band contains an O 2p component amounting to 28%—the present result
supports the proposal of a 2p–3d CT insulating character for CuGeO3.

The energy separation between the occupied and the unoccupied d states is of the order
of U , as indicated by equation (20). Since a largeU usually results in a large gap, it is not
surprising that the present gap is smaller than that of 3.02 eV given by the previous LSDA +U

calculation withU = 9.66 eV, where the unoccupied dxz bands shift up more remarkably
and almost lie in the middle of the Ge bands due to the stronger Coulomb repulsions [23].
Additionally, the previous study gave a relatively large moment, namely 0.89µB .

The present band structure is comparable with the x-ray photoelectron valence band
spectrum (XPS) [17]. A main and broad structure detected at the binding energy of about
4 eV could be attributed to the emission of the O(2) 2p electrons, according with the CT
insulating character and corresponding to a final state d9L (‘L’ stands for a ligand hole). The
second readily detectable structure at≈8 eV would be assigned to the d8 state with some
contribution from the oxygen states, which is ascribed to an enhanced hybridization between
the 3d and the 2p states in the range from−7 to−3 eV relative toEF , as shown in figure 3(b).
Both of the assignments are consistent with the previous ones made on the basis of a comparison
between the XPS spectra of CuGeO3 and CuO [17]. In addition, a weak feature at≈16 eV
may be related to the emission of the Ge–O(1) electrons from the single-electron states, almost
staying at about−11 eV, reflecting the partial Ge–O covalent bonding. But the XPS structure at
≈12 eV, which could originate mainly from the d8 state dominated by the significant correlation
effects [17], is not clearly shown in the present calculation. Being a single-particle method in
principle, the present approach may be too oversimplified, when considered as a treatment of
the genuine many-body interactions, to reproduce all of the details of the experimental XPS
spectrum.

The presentU -correction improves the LSDA results above remarkably, and gives a
satisfactory description for the CT insulating character of CuGeO3, and it also reproduces
some main structures of the experimental XPS spectrum. Therefore, it is confirmed that the
strong d–d electron correlations play an important role in determining the electronic structure
of this compound.

4. Conclusions

The electronic structure calculations have been performed for the spin–Peierls transition system
CuGeO3 by using a modified FP-LCAO band method, which is characterized by both an
efficient evaluation of multi-centre integrals and a precise treatment of the crystal potential.
The LSDA calculation for the AFM state suggests that the strongly orbital-dependent exchange
splittings of the narrow Cu 3d bands open an insulating gap of 0.57 eV for the compound.
With the on-site Coulomb interaction correction of the localized d electrons, the LSDA +U

calculation yields a 2p–3d CT band gap of 2.4 eV and gives a Cu moment of 0.76µB carried
by the dxz orbital, both in accordance with the experimental results. In addition, theU -
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correction reproduces the main features of the XPS spectrum. In conclusion, the exchange
splittings account for a presence of the insulating gap in this cuprate, and the strong d–d electron
correlations are responsible for the wide CT gap of this material.

Acknowledgments

One of the authors, H Wu, would like to thank X G Gong, Z Zeng, and L J Zou for their valuable
suggestions, and he is grateful to S Y Wang, D Y Sun, and M Z Li for useful discussions. This
work was supported by the National Natural Science Foundation of China under the Grant
19574057 and financed by the Grant LWTZ-1289 from the Chinese Academy of Sciences.

References

[1] Hase M, Terasaki I and Uchinokura K 1993Phys. Rev. Lett.703651
[2] Pouget J P, Regnault L P, Ain M, Hennion B, Renard J P, Veillet P, Dhalenne G and Revcolevschi A 1994Phys.

Rev. Lett.724037
[3] Kamimura O, Terauchi M, Tanaka M, Fujita O and Akimitsu J 1994J. Phys. Soc. Japan632467
[4] Lorenzo J E, Hirota K, Shirane G, Tranquada J M, Hase M, Uchinokura K, Kojima H, Tanaka I and Shibuya Y

1994Phys. Rev.B 501278
[5] Harris Q J, Feng Q, Birgeneau R J, Hirota K, Kakurai K, Lorenzo J E, Shirane G, Hase M, Uchinokura K,

Kojima H, Tanaka I and Shibuya Y 1994Phys. Rev.B 5012 606
[6] Zang J, Chakravarty S and Bishop A R 1997Phys. Rev.B 55R14 705
[7] Riera J and Dobry A 1995Phys. Rev.B 5116 098
[8] Castilla G, Chakravarty S and Emery V J 1995Phys. Rev. Lett.751823
[9] Muthukumar V N, Gros C, Valenti R, Weiden M, Geibel C, Steglich F, Lemmens P, Fischer M and Güntherodt G

1997Phys. Rev.B 555944
[10] Hirota K, Cox D E, Lorenzo J E, Shirane G, Tranquada J M, Hase M, Uchinokura K, Kojima H, Shibuya Y and

Tanaka I 1994Phys. Rev. Lett.73736
[11] Braden M, Wilkendorf G, Lorenzana J, Ain M, McIntyre G J, Behruzi M, Heger G, Dhalenne G and

Revcolevschi A 1996Phys. Rev.B 541105
[12] Nishi M, Fujita O and Akimitsu J 1994Phys. Rev.B 50R6508
[13] Mattheiss L F 1994Phys. Rev.B 4914 050
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